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Abstract

This dissertation presents the implementation of a machine learning model, namely an artificial neu-

ral network for distinguishing magnetic signals from cells marked with magnetic particles, and clusters of

free magnetic particles. This dissertation is part of a project that is being developed between INESC-ID

and INESC-MN, whose main objective is the detection of cancer cells in a blood sample. The database

that served as training for the neural network was designed based on simulations carried out using the

magnetic dipole equation as a model of the behavior of the magnetic particle for the two different cases.

The training of the model was implemented using the ReLu function as an activation function of the

hidden layer, and an accuracy greater than 90% was obtained for a system with an RMS value of the

noise signal lower than 7 µV, an ideally higher number of magnetic particles per cell/cluster at 20, and a

maximum magnetic particle travel speed of 2.5 m/s.
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Resumo

Esta dissertação apresenta a implementação de um modelo de aprendizagem automática, nomeada-

mente uma rede neuronal artificial para distinção de sinais magnéticos provenientes de células mar-

cadas com partı́culas magnéticas, e agregados de partı́culas magnéticas livres. Esta dissertação está

inserida num projecto que está em desenvolvimento entre o INESC-ID e o INESC-MN que tem como

principal objectivo a deteção de células cancerı́genas numa amostra de sangue. A base de dados que

serviu de treino para a rede neuronal, foi desenhada tendo por base simulações realizadas através

da equação do dipolo magnético como modelação do comportamento da partı́cula magnética para os

dois casos distintos. O treino do modelo foi implementado utilizando como função de ativação a função

ReLu e foi obtida uma precisão superior 90% para um sistema com um valor RMS do sinal de ruı́do

inferior a 7 µV, um nº de partı́culas magnéticas por célula/aglomerado idealmente superior a 20, e uma

velocidade máxima de viagem de partı́cula magnética de 2.5 m/s.

Palavras Chave

Citómetria de fluxo magnético; Células Cancerı́genas; Sinais Magnéticos; Aprendizagem automática;

Redes Neuronais Artificiais.
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1.1 Motivation

The advancement of technology has allowed human beings to have more and more knowledge of them-

selves and their surroundings. With this evolution, and especially with the scientific discoveries of recent

times, namely the end of the last century, medicine is one of the areas that has benefited most from the

discovery of new techniques for prevention, diagnosis, and treatment. An example of this is oncological

diseases.

Cancer is a disease that results when cellular changes cause the uncontrolled growth and division

of cells [7]. Apoptosis is a phenomenon of the natural death of a cell. A cell receives the instruction

to die so that the body can replace it with a newer cell that functions better. However, cancerous cells

don’t respect these instructions causing the uncontrolled growth and division mentioned before. That

causes the accumulation of dead cells in the body, which can form tumors, impair the immune system,

and cause other changes that prevent the body from functioning regularly.

Cancer is a major burden of disease worldwide. Each year, tens of millions of people are diagnosed

with cancer around the world, and more than half of the patients eventually die from it [8]. This disease

brings, direct or indirectly, many consequences and social impacts on health and the economy. That’s

why it is so important to prevent it.

In the last decades, there has been a great evolution both in the diagnosis and in the treatment

of cancer cases. These technological advances have marked a new perspective in the fight against

cancerous diseases and, currently, there are already numerous diagnostic tests for the detection of

cancer, such as various types of biopsies and cytology.

According to the World Health Organization (WHO), early diagnosis improves cancer outcomes [9],

and the reason this happens is because as cancer results in uncontrollable cell division and multiplica-

tion, so early detection may mean less treatment and less time spent recovering [10], leading to fewer

costs to fight the disease and a better chance to survive. Due to the importance of early detection of

cancer in the fight against the disease, WHO promotes and supports Member States to develop and

implement cancer early diagnosis and screening programmes, according to assessed feasibility and

cost-effectiveness of screening, and with adequate capacity to avoid delays in diagnosis and treatment.

Usually, to detect cancer, a Computed tomography (CT) scan is initially performed to identify the

structures of cancer cells, and subsequently, a biopsy is performed to understand at what stage the

disease is. These tests can identify the disease, however not always at an early stage and the costs

turn out to be very high. The solution may be to use flow cytometry, as it has a much more beneficial

cost and faster results. Thus, Flow Cytometry (FC) appears as a new way of detecting cancer cells in a

blood sample, and it is also possible to detect bacteria.
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1.2 Objectives

This main objective of this work is the study, and simulation of magnetic signals produced by Magnetic

Nano Particles (MNPs) that are attached to the cells or clusters flowing in a microfluidic channel in a

cytometer and the implementation of a Machine Learning (ML) model, for distinction of these signals. A

Magnetic Flow Cytometer (MFC) is a laboratory technique used to count, detect, identify, and character-

ize cells in a solution using Magnetoresistive sensor (MR) sensors. This magnetic-based cytometer, that

is represented in Figure 1.1, is part of a project that is being developed at Instituto de Engenharia de

Sistemas e Computadores - Investigação e Desenvolvimento (INESC-ID) and Instituto de Engenharia

de Sistemas e Computadores - Microsistemas e Nanotecnlogias (INESC-MN), which my dissertation is

part, and its main objective is the detect the presence of cancer cells in a blood sample.

Figure 1.1: Prototype of an MFC made by engineers Rita Soares and Ruben Afonso.

The MFC can count cells in a flow if these cells are previously marked with antibodies or other probes

carrying MNPs. Then, these marked cells are injected in a microfluidic channel, forcing them to come

in proximity with the MR, while in a continuous flow [3], the magnetic field produced by the magnetic

particles is gradually picked up by the MR sensors (Figure 1.2). The interaction between sensors and

particles causes a particular signature similar to the Gaussian pulse and its derivates, which can be

seen in Figure 1.3, depending on the angle of the magnetic particle to the sensor’s plane.

These pulses, produced by MNP, can be identified as part of the Gaussian family due to their simi-

larity with the Gaussian curve and its derivatives. The problem that occurs is that the reading of these

magnetic signals ends up being very difficult, due to numerous factors, such as the distance from the

4



Figure 1.2: Interaction between the MR sensor and a particle that crosses the channel of a cytometer.

particles to the sensor, the signal noise, the speed of the marked cells throws the channel, the sensitivity

of the sensors, etc. Thus, sometimes a signal is identified as a false positive for the observation of a

magnetic signal.

So, the objective of this work is to develop a ML model, namely, an Artificial Neural Network (ANN),

and through the study of some characteristics of the targets (number of particles, distance from sensors,

noise signal) that influence the reading results of cytometer sensors, detect the presence of magnetically

labelled cells more accurately, and distinguish between marked targets and clusters of free MNP. In the

end, and if possible, the objective is also to test this implementation experimentally using cancer cells.
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Figure 1.3: Illustration of the signature of the Gaussian pulse and its derivates.

1.3 Organization of the Document

This document reports the research and work developed to simulate an MNP in a microfluidic channel of

a cytometer in many ways, and mainly uses the data of these simulations to implement an ANN capable

to distinguish between a cell or a cluster of free MNP.

Chapter 2 begins by explaining what is FC in general and MFC in particular and how it works. Then

some works already carried out in the same scope of this project are shown, namely classifiers used

to distinguish cells in a cytometer. At the end of the chapter, an analysis of the resulting signals from

magnetic sensors and how this study can help in the development and implementation of the MNP’s

simulations is presented.

Chapter 3 gives an introduction to what machine learning is, to better understand its role in pattern

recognition, how it works and explains how it is possible to use ANN as a method to differentiate the

signals from the magnetic sensors.

In chapter 4 the performed simulations are presented, namely, the simulation of a single MNP and

then the combination of them that form cells and clusters, and the explanation of how they were imple-

mented.

Chapter 5 shows how the ANN was implemented and the results obtained.
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Finally, in 6, a few conclusions about this work are presented and the main achievements are revis-

ited. Some ideas are also proposed to continue the work.
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2.1 Introduction to Flow Cytometry

FC is a laboratory technique used to count, detect, identify, and characterize cells in a solution. This

method allows the analysis of physical and/or chemical characteristics of the target analytes such as

size, volume, cycle, and count, thus allowing researchers to get highly specific information about indi-

vidual cells. Back in the 1950s, FC was first used to measure the volume of cells in a rapidly flowing

fluid stream, they passed in front of a viewing aperture. Over time, the advancement of new technolo-

gies and the study of innovations by researchers and engineers have culminated in the modern FC,

which is able to make measurements of cells in solution as they pass by the instrument’s laser at rates

of 10,000 cells per second. In Optical Flow Cytometrys (OFCs), the fluorescent intensity produced by

fluorescent-labelled antibodies is measured (using lasers and photodetectors) to detect proteins, or lig-

ands that bind to specific cell-associated molecules, and thus identify certain characteristics unique to

various cell types. It has been reported that fluorochromes suffer from several limitations related to

background interference, fluorescence noise, stability, and lifetime, which limit the performance of these

types of flow cytometers. Also, conventional FC methods have limitations concerning the requirements

for preparations of homogeneous cell suspensions, complex optics, lasers, and photodetectors. These

limitations affect the speed of response, encouraging the development of new FC methods.

2.2 Working Principle

Interest in the development of point-of-care FC using magnetic sensors has been increasing thanks to its

advantages, such as high sensitivity, rapid response, and the use of a small volume of reagents required

per assay in handy devices. In Magnetic Flow Cytometry, the conventional and complex fluorochromes

and photodetectors are replaced by magnetic particles (for labeling) and magnetic sensors (as the detec-

tors) [2]. A flow cytometer typically comprehends some elements. One of them is an excitation source,

like laser light, a magnetic field, an electric field, or radiofrequency waves). In this case of the magnetic

FC, the fringe field is generated by magnetic particles. The excitation source can be any appropriate

device that produces a known magnetic field, like a permanent magnet, that is usually placed below the

sensors. In this case, the sensor used is a MR (e.g., Giant Magnetoresistances Sensors (GMR), which

are the most common sensors in MFCs).

A MFC is used to count a specific analyte in which a sample is present. In common samples, the

target analyte does not usually have a magnetic content. Thus, the analyte must manifest a specific

marker on its surface to serve as an attachment for a probe that can be magnetically functionalized.

These probes can be antibodies, viruses, or any particle with an affinity to the manifested marker on the

target analyte. A MNP can be conjugated with a probe of choice for them to bond with the target analyte.

Functionalized probes can be attached to analytes, providing them a magnetic nature.
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In Figure 2.1 a), one can see a representative schematic of the labeling process. It should result in

a homogeneous cover of the antigens’ surface, like in Figure 2.1 b)), in which one can see fluorophores

labeling a large portion of the bacteria’s surface. Alternatively, it may also result in less efficient coverage

of the antigen, as seen in Figure 2.1 c), in which several MNPs are aglomerated in specific regions, but

most bacteria are not well covered. That’s why a high labeling efficiency is desirable. After this process

of functionalization, MNPs can be used to perform the assay. Figure 2.2 represents how the process of

preparation of the sample is carried out before the sample is introduced in the MFC.

Figure 2.1: Schematic of functionalized particles attached to bacteria from [3] a) bacterial spore labelled with
nanoparticles/antibody conjugate (protein A and antibody’s Fc region. b) STORM (Stochastic Optical
Reconstruction Microscopy) image (x 50,000 magnification); Immunofluorescence image from Bacillus
cereus reacted with rabbit anti-B. cereus antibody and goat anti-rabbit secondary antibody labelled with
Alexa 647, presenting high labeling efficiency. c) SEM picture of B. thuringiensis spores labelled with
magnetic nanoparticles, presenting low labeling efficiency (× 20,000 magnification)

Figure 2.2: Representation of the sample preparation process before it is injected into the MFC’s microfluidic chan-
nel. [4]

The magnetic particles are mixed in a solution containing the targets of interest and will bond to the

specific marker after a specific amount of time. Depending on some factors, like efficiency, number of

target cells contained in the sample, and others, some or several MNPs may remain free in the sample.
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The resulting mixture contains the original solution with the marked targets/cells and free MNP. This final

solution can be submitted to a purification process or be directly injected into the magnetic cytometer.

Figure 2.3 represents a real picture of cancer cells (with 20 µm diameter) with attached MNPs flowing

in the microfluidic channel, and it is possible to see that, as was said before, there are some MNPs that

did not attach to the cells and remained free in the channel.

Figure 2.3: Representation of SW480 cancer cells labelled with 1 µm diameter magnetic beads. [5]

After the sample preparation described before, the sample can be introduced in the MFC. The

excitation source can be any device that produces a magnetic field such as a permanent magnet and

is used to magnetize the MNPs attached to the target and the biological analyte takes on a magnetic

signature. When in proximity to the sensor, the magnetic field produced by the particles is gradually

picked up by the MR sensors. The interaction between the marked particle/cells and the sensor is

shown in Figure 2.4.

The MR sensor’s resistance varies with the integrated magnetic field intensity following the Equation

2.1.

R(H) = RNOM +△R(H).[Ω] (2.1)

RNOM is the sensor’s resistance at zero fields and △R(H) is the field-dependent resistance variation.

Depending on the position of the MNP to the sensor’s plane (magnetization angle), the vector of the

magnetic field could have a different direction so this variation, △R(H), can be positive or negative,
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Figure 2.4: Schematic representation of the MFC concept for a magnetic particle detection. [3]

producing different pulses like the monocycle pulse, that is represented in Figure 2.4 or other gaussian

pulses (Figure 1.3).

2.3 Magnetic Flow Cytometry Problems

Despite all the advantages of Magnetic FC over conventional methods, there are still some goals to be

met to improve the efficiency of this method.

In the last decade, a lot of work and effort has been contributing to the advance in some areas

like the definition and optimization of microfluidic channels, the biological processes involved in the

binding of MNP/target complexes and the improvement of the magnetic sensors used. However, it is

difficult to find some research about signal acquisition and processing in Magnetic FC. Paralleling with

the continuous development of electronics and signal processing, the use of MNPs in conjunction with

magnetic sensors in microfluidics for the detection of biological targets has made a significant advance.

However, it is important to put more effort into developing better sensor acquisition systems, specific

for Magnetic FC to improve the overall performance, namely, creating smarter and more complex signal

processing algorithms.

In the preparation process described before, which is illustrated in Figure 2.2, the MNPs are mixed

in the solution and will bond to a specific marker. As it was said before, depending on some factors,
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like efficiency, the number of target cells contained in the sample, and others, some or several MNPs

may remain free in the sample, so the resulting mixture contains the original solution with the marked

cells and free MNPs. This free MNPs, which did not bind to targets of interest, end up joining, forming

clusters. When the sample is injected in MFC, the sample contains, not only the labelled analytes but

also clusters so the resulting magnetic field felt by the MR sensors contains the data from both signals.

This interference of free magnetic labels on the detection signals of magnetically labelled targets may

lead to false positive results. For this reason, it is important to try to differentiate both signals as much as

possible. That is the objective of this project, to simulate both signals and try to distinguish them using

the data from the simulations to train an ANN as a model of ML.

2.4 Magnetic Flow Cytometry Classifiers - State of Art

There’s not a lot of work using machine learning models to detect or differentiate magnetic signals in the

application of magnetic flow cytometry, because we’re going to be the first to do it and we have a patent

for it. However, some simple classifiers have already been implemented that try to achieve this objective

here at Instituto de Engenharia de Sistemas e Computadores (INESC), and in the following subsections,

I will address how they were developed.

2.4.1 Automatic System to Count and Classify Bacteria [1]

In an attempt to improve the identification of the number of magnetically labelled bacteria associated with

each detection moment, a signal analysis method was created that compares the sensor output signal

(pulse amplitude vs. pulse width analysis) with simulations, developing a classification method based

on an algorithm developed using Matlab. To discriminate the different magnetic signatures, analytical

simulations have been performed using a MNP random distribution on the cell surface, considering that

overall magnetic moment is given by the combination of the individual moments (m), 9.6 × 10−16Am2,

of each MNP. By some studies, the MNP can be approximated to the magnetic dipole [11] [12], that

creates a magnetic field (H) at a position of x-axis (a), give by Equation 2.2. Using the integration of the

magnetic dipole, it is possible to obtain the fringe field generated by each MNP, given by Equation 2.3.

H(a) =
1

4π

[
3a×ma

|a|5
m

|a|3

]
(2.2)

H(x, y, (a+ h)) =
m

4π

∫ L/2

−L/2

∫ W/2

−W/2

[
3x(a+ h)

(x2 + y2 + (a+ h)2)5/2

]
dxdy (2.3)

The resulting simulations, represented in Figure 2.5, were performed considering different configura-

tions of bacteria: a single bacteria and aggregates of bacteria, flowing along the x and y axis at different
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heights over the sensor.

Comparing the orientation x and y from Figure 2.5, higher voltage amplitude signals were observed

for bacteria flowing side by side. On the other hand, longer time length signals were observed for

bacteria flowing one after another, as expected. Furthermore, increasing the number of bacteria the

higher the voltage amplitude and longer time length signals were obtained, regardless the direction of

the movement. Moreover, the higher the distance of the bacteria from the sensor the lower the voltage

amplitude and longer the time length.

Figure 2.5: Simulated signals for three bacteria configurations at different heights from the sensor: h = 0.5 µm
(grey), h = 1 µm (red), h = 2 µm (green).(a) One bacteria; (b) Two bacteria distanced 3 µm from each
other, flowing side by side (y axis); (c) Two bacteria distanced 3 µm from each other, flowing one after
another along the flow direction (x axis). [1]

Experimental measurements of magnetic labelled Pseudomonas aeruginosa were performed to eval-

uate the ability to distinguish between different peak signatures according to the number of bacteria

detected. Figure 2.6 shows for each number of bacteria simulated (according to the different configura-

tions), the range of amplitudes and time lengths represented by circles, while the real data is represented

by blue stars, red hexagons, and black squares. The red hexagons and black squares represent the real

signals with good fitting and no fitting with the simulated data, respectively. The real signal matched with

the simulations coming from 5 bacteria moving along the sensor’s length at 2 µm height.

The comparison of the experimental results with the simulated values confirmed the precision of
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the method in the attempt to discriminate the number of magnetically labelled bacteria using the pulse

amplitude and pulse width analysis. However, this method does not attempt to differentiate bacteria from

free magnetic particles and does not take into account the distance from the x axis between magnetic

particles, as their signals are completely aligned (observe Figure 2.5) and in fact, there should be a

mismatch between them, as we will see later.

Figure 2.6: Comparison between real signals (represented by blue stars , red hexagons and black squares ) and
simulations (represented by circles fitted by black lines). [1]

2.4.2 Analytical Strategy [2]

In order to improve the detection system accuracy, reducing the number of false positives, a method

to distinguish signatures of free or clustered magnetic particles from magnetically labelled targets was

developed. This classification methodology for labelled targets, based on a custom Matlab algorithm,

compares the sensor output signals (pulse amplitude vs. pulse width analysis) with simulations.

The amplitude of the peaks is related to the number of magnetic labels and the height from the

sensor. On the other hand, the peak width is related to the dimensions of the flowing element over the

sensor and is also dependent on the height at which the entities pass from the sensor.

The signal analysis was performed using a custom algorithm developed in Matlab. A threshold is

defined according to the noise baseline, and the program will find the bipolar peaks detected above this

threshold. The detected peaks are considered signals coming from magnetic entities. Then, full width

at half-maximum and half-minimum values are calculated for each peak (Figure 2.7). The simulations of

magnetically labelled targets were performed in Wolfram Mathematica, which allows to predict the num-
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ber of magnetic particles covering the targets and can be used as an indicator of the functionalization

efficiency, (Figure 2.8, dashed lines vs blue points).

Figure 2.7: Measured data showing a) detection of conjugated MNP with antibody and peak width analysis (green
points define the peak amplitude and red points define peak width). (b) detection of 5 µm labelled
beads and peak width analysis (green points define the peak amplitude and red points define peak
width). [2]

Figure 2.8: Comparison of real time signal output points. The signals coming from labelled targets are represented
in blue points. The signals coming from free MNPs are represented in green (individual MNPs) and
in red (MNP conjugated with antibody). Simulations are represented by the three black dashed lines,
each of one representing a different coverage of MNPs. [2]

From Figure 2.8, it is possible to conclude that the signals obtained from the experiment are in

accordance with the values obtained from the simulations, so it was possible the discrimination between

signals, using the compilation of the parameters peak amplitude and peak width. The accuracy of the

method is confirmed. However, in addition to not simulating the free MNP, this method is a classifier

based on only two variables: pulse amplitude and pulse width analysis, they do not take into account
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other variables such as the number of particles that are marked (since this number is unknown), the

distance between particle (x-axis), and their proximity to the sensor in height (z-axis).

2.5 Signal Analysis

In order to improve the detection and differentiation of signals, namely the distinction of signals from

magnetically labelled cells and free MNP, it is necessary to increase the detection rate. We can divide

signal processing into two approaches. Increasing the signal quality (Signal-to-Noise Ratio (SNR)), or

using the knowledge about the signal (time and frequency domain characteristics) to ’find’ it in the middle

of the noise.

Specifically, in very noisy or low SNR systems, knowing the signal well is very important for signal

processing. Since this is the case in Magnetic FC, before explaining any signal processing or pulse

detection, it is beneficial to understand the signals’ nature, from a signal processing perspective.

2.5.1 Gaussian pulse and Gaussian Mono-cycle

As stated in section 1.2, an MFC can count cells in a flow if these cells are previously marked with

antibodies or other probes carrying MNP. In turn, these marked cells are injected in a microfluidic

channel, forcing them to come near the MR sensors, while in a continuous flow. The interaction between

the sensors and the particle causes a pulse with a specific signature. These pulses can be approximated

to Gaussian pulses, as the ones are shown in Figure 1.3. The first and second-order derivatives are

obtained from the original Gaussian pulse. As seen by comparing Figure 1.3 with real experimental

data acquired (Figure 2.9) the most relevant signal shape for this work is the Gaussian monocycle. In

extreme cases, the signal will also resemble either a positive or negative Gaussian pulse or its second

derivative, the Ricker wavelet.

Figure 2.10 shows how the magnetization angle can change the shape of the pulse produced by

a magnetic particle. When the magnetic axis of the dipole is perfectly perpendicular to the sensing

axis, the resulting signal, which can be seen in Figure 2.10 a), is bipolar and resembles a Gaussian

monocycle. On the other hand, when the magnetic axis is parallel to the sensor the resulting signal is

unipolar and resembles a Gaussian pulse or Ricker Wavelet, depending on if it is positive or negative,

as is shown in Figure 2.10 b).

In this work, it will be assumed that the signatures produced by the MNPs and detected by the MR

sensors are similar to the Gaussian monocycle pulse, since, the experiments are performed mainly by

making sure the magnetization field produced by the permanent magnet is perpendicular to the sensors

sensing axis (Fig. 2.4), using reduced flow rates (to avoid particle rotation). The similarity between the

magnetic signal and Gaussian family pulses is important because these impulses are well characterized.
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Figure 2.9: Example of experimental data acquired in the MFC. a) clip of full experiment containing seven high-
lighted bipolar pulses. b) zoom of a pulse with large SNR, crossing upper and lower decision bound-
aries. c) zoom of a pulse with low SNR, barely crossing the decision boundaries. Both b) and c) show
the pulse before (black) and after filtering (red).

The Gaussian pulse (yp) is expressed in Equation 2.4 and its derivate, the Gaussian monocycle (ymc)

is represented in Equation 2.5, where A is the maximum of the impulse, a is the constant that determines

the slope of the pulse and t is time [13].

yp(t) = Ae−a2t2 (2.4)

ymc(t) = −2a2tAe−a2t2 (2.5)

By taking the Fourier transform of Equation 2.5, the spectral response of the Gaussian monocycle

described in Equation 2.6 is obtained with a maximum at a frequency f0 given by Equation 2.7.

Ymc(w) =
iwA

a
√
2
e−

w2

4a2 (2.6)

f0 =
a2
√
2

2π
(2.7)

The 3-dB bandwidth between the two frequencies lower and higher than f0 (fL and fH ) for which

the amplitude pulse is 1/
√
2 of the maximum can be derived by Equation 2.7 where Tp = 1/f0 is the

pulse duration. Equation 2.8 demonstrates that the 3-dB (half power) bandwidth of a Gaussian pulse

is approximately 115% of the center frequency between fh (2.9) and fl (2.10). Thus, to determine the

effective bandwidth of the signal in MFC one must consider the maximum and minimum particle speed.
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Figure 2.10: Schematic representation of signal output for an MR sensor when applying a) a perpendicular or b) an
in-plane excitation field for a particle of 2.8 µm of diameter (Dynabeas M-280 streptavidin) at 2 µm [3].

△f = fh − fl =
1.155(a

√
2)

2π
= 1.155f0 = 1.155/Tp (2.8)

f0 +

(
1.155f0

2

)
≤ fh (2.9)

fl ≤ f0 −
(
1.155f0

2

)
(2.10)

Assuming that the signal’s power is symmetrically distributed around f0 and considering the max-

imum and minimum pulse duration, solving (2.9) and (2.10), the fasted and slowest particles produce

signals with the following -3dB bandwidths: 3.3 kHz, from 2.54 kHz to 5.25 kHz, and 372 Hz, from 137

Hz to 510 Hz.

2.5.2 Signal Strength

The signal strength depends on two factors of the magnetic target, how saturated it is, and its proximity

to the sensor. The first depends on the type of MNP, how good the binding process to the target is, and

on the strength of the magnetic field produced by the biasing element. The sensor’s distance depends

on the particle’s position inside the flow, limited by the channel’s height.

It is possible to count the exact number of events if magnetic simulations are performed in perfect

conditions (e.g no target superposition), to establish the maximum height for the channel. In Magnetic
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FC, with small targets like cells and bacteria, the field intensity is maximized at the sensor’s point closer

to the source, and it decays rapidly as the distance increase. Thus, the size of the sensor relative to the

size of the target is crucial.

The point-like behavior of an Micro-Metric Magnetic Particles (MMP) or MNP can be modelled as a

magnetic dipole [11] [14], if it is assumed that the particle is spherical, and the dipole center is at the

geometrical center of the bead. Considering this, D. M. Caetano performed a simulation in his work [6],

that is represented in Figure 2.11, using the magnetic data from the Dynal M280 beads that carry a

magnetic moment of a 1.86× 10−13 Oe in a sphere with a diameter of a 2.8 µm.

The simulation is based on integrating the magnetic field produced by a magnetic dipole on the MR

sensor’s surface area, predicting the signal’s amplitude as the dipole/particle crosses the sensor while

flowing at a fixed height and magnetization angle. The simulation results contemplating combinations of

different heights and angles generate most of the signal shapes that the sensor produces.

Equation 2.11 represents the integral of the field produced by a magnetic dipole in the sensitive axis

(x) of the sensor used in this simulation. x0 and y0 represent the center of the sensor, l and w represent

the length and width of the sensor, θ represents the magnetization angle, and x and y represent the

position of the center of the dipole relative to the center of the sensor.

Hxavg =

(∫ 1
2−y0

− 1
2−y0

∫ w
2 x0

−w
2 x0

M
4π

4π
1000 × 3 cos θ(x+h)+sin θx2

(x2+y2+h2)5/2
− sin θ

(x2+y2+h2)3/2
dxdy

)
w × l

[Oe] (2.11)

Figure 2.11: Simulation of dipole/sensor interaction for different height and magnetization angles using Equation
2.11. a) The red line represents the specific case of the largest distance possible for a 2.8 µm particle
with the magnetization field perpendicular to the sensor. b) representation of the complete 180 simu-
lations for all the different heights and angles [6].

The simulation of the dipole to the sensor for a 2.8 µm particle is represented in Figure 2.11. The
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amplitude in volts is computed by assuming a GMR sensor with a sensitivity of 0.4 Ohms per Oersted,

biased with a constant current of 1 mA. In Figure 2.11 a) it is possible to see the simulation for a particle

at 8.5 µm and perpendicular magnetization angle producing a signature close to what is a Gaussian

monocycle, as mentioned before. In Figure 2.11 b) is represented the simulations for a particle traveling

in the center of the channel with the height’s parametric sweep range from 1 to 10 µm, and magnetization

angles between -20 and 20 degrees, relative to the plane perpendicular to the channel’s base, and

direction of flow.

In this thesis, I will use the same equation, ignoring the magnetization angle since, as it was said

before in subsection 2.5.1, it will be assumed that the magnetization field produced by the permanent

magnet is perpendicular to the sensor’s sensing axis, so the magnetization angle can be ignored. In-

stead of doing these simulations with just one magnetic particle, these simulations will be done with

numerous particles, representing two main types of signals: marked cells (with multiple MNPs around

it) and clusters (set of free MNPs grouped). This simulation with several particles will be at different

distances from the center of the sensor (according to z and x) resulting in signatures superimposed on

each other. This will give us information about how the different kinds of particles interact with the sensor

and this information will be our data to train the artificial neural network that will recognize patterns and

mainly distinguish the signal between a marked cell and a cluster of free MNPs, as will be explained in

the next chapter.
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3.1 Machine Learning

Machine Learning (ML) are computer-based methods to perform a specific task that can be improved

through experience, i.e., observing the many different events of the phenomenon under study [15] and

that can be considered part of artificial intelligence. These ML’s algorithms are built from a “training

data-base”, that uses this information to train and predict decisions.

ML is, in part, based on a model of brain cell interaction. The model was created in 1949 by Donald

Hebb in a book titled “The Organization of Behavior” [16]. The book presents Hebb’s theories on neuron

excitement and communication between neurons. Some years later, in 1959, the term machine learning

was coined by Arthur Samuel (IBM) with his research “Some Studies in Machine Learning Using the

Game of Checkers” where he used a computer to test if a computer using machine learning could win

a game of checkers versus a human being. Robert Nealey, the self-proclaimed checkers master, played

the game on an IBM 7094 computer in 1962, and he lost to the computer [17].

Currently, ML models are used in internet search engines, email filters to sort out spam, websites

to make personalized recommendations, banking software to detect unusual transactions, and lots of

phone applications such as voice recognition. First, it is necessary to create the data-set, that is the

data that will be used by ML’s model to train and predict the results. There are some models that have

been used and researched. Some examples are decision trees and support vector machines, but the

model that will be used in this work is an Artificial Neural Network (ANN). This model is used in many

applications, like pattern recognition, because of its ability to reproduce and model nonlinear processes.

ANN is also known for creating very flexible and precise classifiers and producing universal regressors.

3.1.1 Training Data-Set

Every ML’s model needs a data-set, it is this data that is used to train the model to predict results. A data

set is a collection of data, or in other words, consists of the sample output data and the corresponding

sets of input data that have an influence on the output. In fact, defining the data that the ML’s model will

use is not such a simple task. It is necessary to define well what the problem is and what results we

want (outputs), and then what observations (inputs) are needed. Then, it is necessary to frame the data

at a scale that the ML’s model can train. For example, if the objective is to understand which shades

of clothing are in fashion and if color of a sweater is one of the inputs, the color must be defined as a

number.

For this project there are three main objectives:

• Identifying magnetic signatures in the noisy signal.

• Determining event characteristics, like, target speed/time-of-flight, volume, distance from sensors,

magnetization angle, etc;
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• Differentiating between marked targets and clusters of free MNP;

The first two points were already worked by D. M. Caetano in his thesis [6]. My objective is to continue

that work but mainly implement the third point.

3.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computing systems inspired by the biological neural networks

that constitute animal brains. This definition reminds us of the model created by Donald Hebb in 1949,

mentioned earlier, which said that machine learning is, in part, based on a model of interaction between

brain cells.

3.2.1 The neuron

An ANN is based on the connection of units or nodes called neurons. The neuron is the basic building

block of an ANN, and as a biological neuron, the artificial neuron is made up of several inputs and an

output as seen in Figure 3.1.

According to the human brain, the inputs could be the five senses, vision, touch, or smell, it is

basically the information that the brain gets from the senses. In terms of ML models, these are the input

values, the independent variables. The inputs of the neuron can be only data or can be the output of

another neuron (forming a connection of neurons – ANN). Each input corresponds to an observation.

For example, if we were to access the purchasing power of a bank customer, one possible input would

be the salary of each customer.

There are weights that are assigned to each input and correspond to the degree of importance that

that observation has for the neuron. The output result is calculated by an internal function (activation

function) which is the sum of the inputs according to their weights. When the artificial neural network is

trained, all the weights are adjusted, that’s the reason why weights are so crucial to the ANN functioning.

A single neuron can be seen as a linear classifier and it is by itself a powerful tool that can solve binary

classification problems in which the classes are linearly separable. However, when several neurons are

connected, (Figure 3.2), impressive results can be achieved.
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Figure 3.1: Representation of a single neuron.

Figure 3.2: Representation of a neural network, showing the connections between each layer.

3.2.2 Activation Functions

As mentioned earlier, the activation function is the function that is applied by the neuron using their

inputs and weights to calculate the output. There are many activation functions, but three of the most
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common are the sigmoid (Eq. 3.1), the hyperbolic tangent (Eq. 3.2), and the rectifier linear unit – ReLu

(Eq. 3.3) [18]. Figure 3.3 represents the shape of these activation functions.

ϕ(x) =
1

1 + e−x
(3.1)

ϕ(x) =
1− e−2x

1 + e−2x
(3.2)

ϕ(x) = max(x, 0) (3.3)

Figure 3.3: Common activation functions: sigmoid, hyperbolic tangent, rectifier or ReLu [6]

The sigmoid and hyperbolic tangent activation functions are very well defined mathematically. The

same cannot be said of the rectifier linear unit. This function computes the maximum between zero

and the value of x, so if the weighted sum of all the inputs is larger than zero, then the result is linearly

proportional to the input. However, if the weighted sum of all the inputs and offsets results is a negative

number, the neuron outputs zero. This ends up bringing simplicity to the function, furthermore, ReLu

function has a strong biological motivation, and it has been demonstrated to enable better training of

deeper networks than other activate functions [18]. For that reason, in the work we are developing here

will use the ReLu function as an activation function in the hidden layer of the artificial neural network.

3.2.3 ANN training and Back Propagation

As was said before, the ANN uses the input values, that correspond to the observations to calculate the

output prediction, using an activation function. In fact, the output prediction value (ŷ) is not necessarily

equal to the value of the actual output (y), so there is a difference between these two values (even if it

is small). What the ANN does is calculate the ’error’ between these values based on a formula called

the cost function. There are very formulas for the cost function, but the most common is represented in

Equation 3.4. The goal is to minimize the cost function because the lower the cost function, because the

lower the cost function, the close the prediction output value (ŷ) is to the real value (y).
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C =
1

2
(ŷ − y)2 (3.4)

After this process, the information with this ’error’ is propagated back into the neural network and the

weights, mentioned before, are updated, and the cycle is repeated, decreasing the cost function, thus

bringing the predicted value closer to the actual value. When the whole training set passed through the

ANN, that makes an epoch. An epoch is a term used in ML and indicates the number of passes of the

entire training data-set the ML algorithm has completed. Later on, I will address in more detail about

how the ANN was implemented in this work, namely, how the training data-set and the network structure

were defined.

31



32



4
Magnetic Particles Simulations

Contents

4.1 MNP Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Cell Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Cluster Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Cell vs Cluster Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Adding Noise to simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

33



34



4.1 MNP Simulation

As mentioned before, in subsection 2.5.2, since it is possible to model the signature of an MNP using the

equation of a magnetic dipole (Equation 2.11) if it is assumed that the particle is spherical, and the dipole

center is at the geometrical center of the bead, a simulation was performed to determine the magnetic

field, measured by a GMR sensor, through its position (in x, y, z in relation to the sensor) of a single

MNP. The simulation, that is represented in Figure 4.1 a), represents the magnetic field measured at the

output of the entire system (after the signal has been measured by the sensor and been amplified), in

µV, produced by an MNP of 2 µm of diameter at 5 µm of height (distance from the particle relative to the

plane perpendicular to the channel’s base). It is possible to see that the simulation of a particle produces

a signature close to what a Gaussian monocycle pulse is (Fig. 1.3), as mentioned before. Figure 4.1 b)

represents the simulations for a particle traveling in the center of the channel with the height’s parametric

sweep range from 3 to 15 µm, relative to the plane perpendicular to the channel’s base, and to direction

of flow.

Figure 4.1: Representation of the simulation of a single MNP: a) 1 MNP at 5 µm of height; b) 1 MNP at 10 different
heights from 3 µm to 15 µm.
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4.2 Cell Simulation

Based on the confirmation that the dipole simulation can be used to describe the comportment of an

MNP, it is now possible to simulate the MNP’s around a cell. Through Figure 4.2, it is possible to

observe the result of the simulation that uses a sphere to represent a cell with 10 µm of diameter, and

an algorithm was performed that randomly distributes points along the spherical surface (blue dots), thus

representing the MNPs distributed around the cell.

Figure 4.2: Representation of a cell with 10 µm of diameter with 20 particles (blue dots) on its spherical surface
randomly distributed.

Using this random distribution of particles around the cell, it is possible to use it combined with the

MNP simulation to simulate the output signal produced by the particles when they are attached to the

cell. Each particle will have a different position (height and width) in relation to the center of the sensor,

so the final result will be the sum of the magnetic field produced by all particles.

Figure 4.3 shows the simulation of 15 particles randomly arranged on the spherical surface of a cell,

as well as the signal resulting from the sum of all particles. The cell has 10 µm of diameter and is located

at a height (z) of 6 µm. It is possible to observe that the MNPs are at different distances from the center

of the sensor, to the x-axis, and as they are also located at different heights to the z-axis, the MNPs that

are closer to the sensor have a bigger magnetic field signal than those that are further away.
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Figure 4.3: Simulation of 15 MNPs around a cell with 10 µm diameter, located at 6 µm of height. Above, the
representation of each particle, below, the representation of the sum of the simulated particles.

4.3 Cluster Simulation

Clusters are sets of MNPs that never came together with the analytes/cells present in the samples,

and that, therefore, end up joining each other. To simulate clusters, it is necessary to define how they

are grouped. Assuming that all MNPs are spheres, it is possible to use the packing of spheres as a

grouping method. In geometry, a sphere packing is an arrangement of non-overlapping spheres within

a containing space. The spheres considered are usually all identical in size, and the space is usually

three-dimensional Euclidean space. There are two main methods of sphere packing, square packing,

and the hexagonal packing. Both are represented in Figure 4.4.

Figure 4.4: Square and hexagonal packing representation for spheres (MNPs).
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The first method used to simulate clusters was the square packing, because, although it is a method

that uses more free space than hexagonal packing, it is easier to implement, since if we define the main

sphere/MNP, with 2 µm of diameter, placed in a certain position, all the others are situated at a distance

of 2 µm in all x, y, z directions from the main one.

In Figure 4.5 is represented the simulation of a cluster with 15 MNPs using the square packing.

Figure 4.5: Cluster Simulation for 15 particles using square packing.

From this simulation, it is possible to conclude that, unlike cell simulation, in cluster simulation, the

MNPs, from the point of view of the x-axis, are more close to each other and they have all spaced

the same distance, which in this case is 2 µm which corresponds to the diameter size of the particle.

This happens because in this case there are no cells between the particles, and therefore they are

closer to each other. For this reason, it is natural that the signals from the cluster simulation have a

greater amplitude because as the distance between the particles is smaller, the sensor detects a higher

magnetic field when the particles pass through it.

4.4 Cell vs Cluster Simulation

One way to compare and differentiate the signals from the simulation of cells and clusters is to observe

the two signals simultaneously when subjected to the same conditions of particle numbers and heights in

relation to the sensor’s plane. The following Figure 4.6 shows the simulated signals of cells and clusters

for the same number of particles (15 MNP) with a height (from the center of the cell/cluster to the plane

of the sensor) relatively close to the sensor (6 µm).

From this Figure 4.6 it is possible to conclude that the magnetic field signal coming from the cluster

38



Figure 4.6: Cell vs Cluster Simulation signals for 15 MNPs located at 6 µm of height to the plane of the sensor.

simulation (green signal) has a greater amplitude in comparison to the cell simulation (blue signal). To

compare both signals with a different perspective, Figure 4.7 represents the same signals but for a

distance further from the sensor plane (10 µm).

Figure 4.7: Cell vs Cluster Simulation signals for 15 MNPs located at 10 µm of height to the plane of the sensor.

It is possible to observe that the smaller the distance in height of the particles to the sensor’s plane,

the greater the amplitude of the signal. The reason is because the magnetic field produced by the

particles, felt by the sensor, is stronger, once the magnetic particle is closer to the center of the sensor.

It is possible to conclude that the simulations seem to correctly demonstrate what happens in reality.
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4.5 Adding Noise to simulations

Although the simulation results seem acceptable and similar to what is expected from the real signals,

the absence of the noise signal in the simulation can be a negative point for the artificial neural network’s

results, because the real signal resulting from the interaction of the magnetic particles with the MR

sensors in the cytometer contains noise. The simulated results shown here have no noise, which makes

it very simple for the neural network to distinguish the signals between cell and cluster, so the ANNs

results would be inconclusive, as they would not translate to real data.

Thus, to add noise to the simulation, a value obtained randomly through a normal distribution was

added to the original signal. A normal distribution (also known as Gaussian, Gauss, or Laplace–Gauss

distribution) is a type of continuous probability distribution for a real-valued random variable. The general

form of its probability density function is described in Equation 4.1 where µ is the mean or expectation

of the distribution and σ is it standard deviation. For this case, it can be assumed that µ is zero and σ

will be the parameter that defines the amplitude of the noise signal in µV.

f(x) =
1

σ
√
2π

e−
1
2 (

x−µ
σ )2 , (4.1)

Figures 4.8 and 4.9 represent the simulation for 1 MNP located at 5 µm of height in relation to the

center of the sensor with a noise signal of σ=2 µV and σ=10 µV, respectively.

Figure 4.8: Simulation of an MNP located at 5 µm of height with a noise signal of σ = 2 µV.

By observing the figures, the greater the value of the sigma parameter, the greater the amplitude

of the noise signal, and therefore, the more difficult it is to distinguish the signature from the presence

of the MNP in the microfluidic channel of the cytometer. The same will also happen in relation to the
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Figure 4.9: Simulation of an MNP located at 5 µm of height with a noise signal of σ = 10 µV.

height that the particle is to the sensor, because for the same sigma value, the greater the distance to

the sensor’s center, the more difficult it will be to find the signature. This can be observed by comparing

Figures 4.8 and 4.10, the difference between them being the height of the MNP. For particles located

further away from the sensor, the amplitude of the signal is smaller, as was concluded before, and it

becomes more difficult to detect their presence.

Figure 4.10: Simulation of an MNP located at 15 µm of height with a noise signal of σ = 2 µV.

Thus, concluding that the implementation of cell and cluster simulations is well defined and according

41



to what happens in reality, it is now possible to use the data obtained from the simulated magnetic field

to train the artificial neural network as will be stated in the next chapter.
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5
Artificial Neural Network Results
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5.1 Data-set structure

A training data-set is the base for any machine learning application, and as was explained in Chapter 3,

it contains the data that will be used by a ML model, in this case, an ANN, to train and predict the results.

Thus, remembering that the objective is to distinguish between a cell and a cluster through the signal of

the magnetic field, we have as input of the neural network the signal itself, that is, the signature that was

shown earlier that resembles the Gaussian pulse. So this task can be approached as a classification

problem, and as an output of the ANN, we have the value ’1’ if this signal corresponds to a cell and the

value ’0’ if it is a cluster. Each input has 250 points that correspond to the pulse and that is translated by

the sum of the magnetic fields produced by the magnetic particles that constitute the cell or the cluster.

Table 5.1 is a representation of how is the data-set that will serve as training for the neural network.

Table 5.1: Representation of the data-set training.

ANN Output ANN Input

NºParticles Sigma’s Noise Signal [µV] Height[m] Cell/Cluster Magnetic Field [µV]

17 2 5e−6 1 [-1.94703, 1.90645, ... , 0.86984, 1.33735]

17 2 5e−6 0 [1.05238, 3.31398, ... , 1.82329, 3.76494]

17 3 10e−6 1 [-0.59911, 2.35205, ... , 1.44749, -0.91202]

17 3 10e−6 0 [-2.63580, -1.91170, ... , 0.74629, 1.26064]

(...)

70 12 15e−6 1 [1.11419, 3.08200, ... , 0.41205, -0.05114]

70 12 15e−6 1 [-1.15678, -1.056711, ... , 0.75632, 2.27631]

Table 5.1 only represents a few cases for information purposes, however, the dataset is made up of

thousands of cases since each characteristic that affects the magnetic field will vary as follows:

• Height ranges from 5 to 15 µm with a step of 0.1 µm;

• The Sigma value of the noise signal varies between 2-12 µV with a step of 1 µV;

• The number of particles per cell/cluster will take the following values: [6, 10, 17, 22, 31, 40, 55, 62,

70].

The choice of the number of particles was taken into account that it would be very difficult to make

a dataset with all possible numbers of particles, and for that reason, a random number was chosen

for every ten up to a maximum of 70 particles. Furthermore, for each different case, 5 different noise

vectors are generated, to take into account that each noise vector is implemented randomly, through the

equation 4.1, and to have more data in the dataset.
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5.2 ANN structure

As explained in Chapter 3, an ANN consists of 3 main layers: the input layer, the hidden layer, and the

output layer. To implement our ML model, first, it is necessary to define its size, namely the number of

neurons in the hidden and output layers.

In [19] these are a few of the rules suggested to size the hidden layers:

• The number of hidden neurons in each layer should be between the input layer’s size and the size

of the output layer.

• The number of hidden neurons in each layer should be 2/3 the size of the input layer, plus the size

of the output layer.

• The number of hidden neurons in each layer should be less than twice the input layer’s size.

These methods provide guidelines and a possible starting point for the optimization of the ANN.

However, trial and error are always necessary to achieve the best ANN architecture. For this reason, I

used some of these methods as a test to find the best result for the neural network. Using the same

number of neurons in the input layer for the hidden layer, which in this case is 250, which corresponds

to 250 points/samples of the magnetic signal obtained through the simulation, the accuracy results

obtained were the best compared to other values or methods. Since the input is fixed, because it always

has 250 values extracted from the signal, we can assume that the number of neurons in the input and

the hidden layer is always fixed and equal, as we have obtained the best accuracy results in this case.

The output layer is composed of only one neuron once this is a classification problem where there

are only two classes, ’cell - 1’ or ’cluster - 0’. For that reason, the activation function in this layer is the

sigmoid function. As mentioned before the activation function for the hidden layer is the ReLu function

because in addition to its simplicity, this function has a strong biological motivation, and it has been

demonstrated to enable better training of deeper networks than other activate functions.

The data preparation, the ANN architecture, and training were performed in python language, using

the Keras library with the TensorFlow 2.2.0 back-end and the sci-kit learn package.

5.3 Training

Usually, the process of training is measured in epochs. One epoch refers to the process of running the

entirety of the training set through the model, only once. In practical terms, the greater the number of

epochs, the greater the accuracy of the neural network, but this brings other associated problems such

as over training, and the time it takes to train the data-set, so it is necessary to make the right decision.
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The number of epochs can be set to an integer value between one and infinity, so, to define the

number of epochs that the ANN needs to train with a good performance, I start to perform a training

session with the entire data-set using 250 epochs, the results of the accuracy in the function of the

number epochs are represented in Figure 5.1.

Figure 5.1: Evolution of the classification accuracy during training for the train set of examples.

It is possible to conclude that 150 could be a good value of epochs to train because it is when the

accuracy becomes more stable. Accuracy means the degree to which the result (of the model to predict

if the signal is a cell or a cluster) is correct. Training again the data-set with 150 epochs, the maximum

value of accuracy was 99.68%, which means that, with a data-set of 77 thousand cases, 247 cases

cannot be correctly classified by the model. That is, to predict whether the signals are cell or cluster

for all signals, the model is tested by predicting for each signal whether it is cell (1) or cluster (0), if the

prediction value matches the real value the result is correct (1). If the prediction is wrong, the result is

incorrect (0). The accuracy value corresponds to the average of the results. For example, for the results

represented in Table 5.2 the accuracy (Eq. 5.1) will be the mean of the result column.
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NºParticle Prediction Real Value Result

17 1 1 1

17 1 1 1

17 0 0 1

17 0 0 1

17 0 0 1

17 1 0 0

Table 5.2: Example of model results for nºparticles equal to 17.

Accuracy =
1 + 1 + 1 + 1 + 1 + 0

6
= 0.8(3), (5.1)

For this example, the accuracy will be 0.8(3), which means for 6 cases the model predicted correctly

5 and failed in 1 case.

The objective of this project is to distinguish between cell and cluster magnetic signals, for a different

number of particles and positions. So to interpret better our accuracy results, the model was trained us-

ing the entire dataset, and to observe the predictions of the model as a function of different parameters,

I split the data-set test into a different number of particles and different heights to classify and observe

how the accuracy of the model varies with the variation of these parameters. The results obtained are

represented in the next section.

5.4 Results

The first results obtained are presented in Figures 5.2 and 5.3. Figure 5.2 represents the accuracy of

the model as a function of 2 parameters: the number of particles per cell/cluster, and sigma of noise

signal. For a bigger number of particles, the color is darker and for smaller particle numbers the signal

is lighter. Figure 5.3 represents the accuracy of the model as a function of the height of the cell/cluster

to the plane’s sensor and also the sigma. For heights closer to the sensor (5 µm) the signal is darker

and for heights more furthest (15 µm) the signal is lighter.
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Figure 5.2: ANN accuracy for different nºparticles and sigma values.

Figure 5.3: ANN accuracy for different range of height’s values and sigma values.

As mentioned in the conclusions of the simulations in the previous Chapter 4, for larger particle

numbers and smaller heights the magnetic field is higher since in the first case the magnetic field pro-

duced is larger because there are more particles, and in the second case because as we are closer

to the sensor, the signal is felt by it more intensely. Furthermore, for higher sigma, the noise signal is

also higher. Putting these two facts together, supposedly what should happen was that the accuracy

should decrease over sigma values since the noise signal was higher and it should be more difficult
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to distinguish between cell and cluster in the middle of the noise. However, what happens is precisely

the opposite, which leads us to the conclusion that the ANN, from a certain moment on, no longer dis-

tinguishes between cell and cluster, to start distinguishing between noise signal and cluster signal (for

having the largest amplitude of magnetic field), which is a bit easier to differentiate. This is a negative

result because the ANN begins to misclassify with a lower SNR values (greater sigma values), which

will be more common in reality.

That said, for this not to happen I decided to decrease the maximum number of sigma of the noise

signal to 7 µV, since it was from this sigma value that accuracy became very high and stable close to

1, as can be seen from the previous figures. From now on, to make the results more understandable,

these will be represented in SNR values in dB instead of sigma values, following Equation 5.2. Besides

that, the number of particles less than 10 can be removed because the signal is not strong enough to

make useful conclusions.

SNR [dB] = 20log


√(∑n=250

n=1 Magnetic F ield(n)
)2

√(∑n=250
n=1 Noise Signal(n)

)2

 (5.2)

Applying the decisions made above, the result that translates the accuracy as a function of SNR value

intervals by the number of particles is represented in Figure 5.4. In this case, the noise signal is higher

for lower SNR values, so the results show that, on average, with increasing SNR value range, accuracy

tends to improve. Furthermore, for larger numbers of particles that make up cells and clusters we have

higher accuracy, to smaller numbers of particles. Figure 5.5 is represented the accuracy of the model

as a function of the height of the cell/cluster to the plane’s sensor and also SNR value intervals. For

smaller height’s values, when the position is more closer to sensor, the accuracy is greater. For bigger

distances to the sensor the accuracy decreases. The figure shows that overall there is a tendency for

accuracy to improve as SNR values increase.

It can be concluded that this ANN can differentiate, with good accuracy, the cell signals from cluster

signals for a system with a maximum RMS noise signal of 7 µV which is the equivalent of a minimum

SNR value of 9.90 dB, for cells and clusters with a minimum of 20 particles. Although there is no

maximum number for particles, the maximum number used to train was 70 because it seems to be a

reasonable number for particles that are attached to a cell. The actual value of RMS noise in the MFC

that we are working on in this project is between 2-5 µV at 200KHz bandwidth, so this model can predict

any signal that is between these values.

To have a visual perception of the signals that we are talking about, the following Figures 5.6, 5.7,

5.9 and 5.8 represent both signals (cell/cluster) in the same conditions to exemplify the magnetic signals

with the maximum and minimum values of SNR that this model can predict. By observation of the
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Figure 5.4: ANN accuracy for different nºparticles and SNR range values.

Figure 5.5: ANN accuracy for different heights and SNR range values.

first two Figures (5.6 and 5.7), it can be concluded that for a minimum SNR value, that corresponds

to worst conditions, both simulations look similar which can be translated as harder for the ANN to

distinguish the signals. Another characteristic that must be mentioned is that for the same conditions,

the cluster simulation has always a bigger SNR value, that happens because the cluster signal has

a bigger amplitude (because of all the reasons mentioned before) and the noise signal has the same

amplitude for both signals so SNR values will be bigger for cluster simulations. For better conditions

(Fig. 5.9 and 5.8), the cluster simulation has a greater amplitude than cell simulation so it is much easier

for ANN to differentiate it.
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Figure 5.6: Example of a signal for minimum SNR (11.41 dB) for a cell simulation with 20 particles at 15 µm of
height.

Figure 5.7: Example of a signal for minimum SNR value of 13.24 dB, for a cluster simulation with 20 particles at 15
µm of height.
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Figure 5.8: Example of a signal with a SNR value of 44.9 dB, for a cell simulation with 70 particles at 5 µm of
height.

Figure 5.9: Example of a signal with a SNR value of 48.02 dB, for a cluster simulation with 70 particles at 5 µm of
height.

5.5 Signal Subsampling

The results obtained so far translate the accuracy of the model that uses as input the signal that results

from the sum of the magnetic field produced by the particles. This signal contains 250 samples, however,

it will not always be possible to obtain this amount of samples, because if the particles travel at a higher
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speed for the same sampling frequency we will have a signal with fewer samples. So the idea is to try

to understand if the artificial neural network, that was implemented, can distinguish the signals when

the particles travel at a higher speed. And if so, establish a limit situation by which the model fails to

distinguish.

In Figures 5.10, 5.11, and 5.12 there are some results of ANN accuracy for simulations with different

particle’s speed and with a frequency sample of 200 kHz.

Figure 5.10: ANN accuracy for different nºparticles and SNR range values for a particle speed of 0.8 m/s, which
corresponds to a signal with 30 samples.

Figure 5.11: ANN accuracy for different nºparticles and SNR range values for a particle speed of 2 m/s, which
corresponds to a signal with 14 samples.
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Figure 5.12: ANN accuracy for different nºparticles and SNR range values for a particle speed of 4 m/s, which
corresponds to a signal with 6 samples.

For observation of the figures, it is possible to conclude that for a greater particle’s speed (fewer

samples), in general, the accuracy values tend to decrease, as it is possible to see from Figure 5.13,

which shows how the model accuracy varies as a function of the particle’s velocity.

Figure 5.13: ANN accuracy mean for different values of particles speed.

According to [6] there is a estimation that is necessary at least 10 samples to fully characterise

the pulse, as suggested by [20], [21]. This estimate arises through the Equation 5.3, that estimates the

maximum flow rate in µl/min to use on the cytometry experiment considering: sampling rate (Fs) the ratio

between pulse duration and maximum to minimum duration (α = Tfull/TH−L) empirically estimated to

be between 3-4 in the case of bipolar Gaussian mono-cycles, the sensor length (Lsens), the minimum

desirable number of samples to reconstruct the signal (Smin), the microfluidic channel’s height (hc) and
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width (wc), as well as the channel section (Asec).

Flow rate =
Lsens × α× Fs(

−0.56( hc

wc
)2 + 1.15( hc

wc
) + 1.5

)
Smin

Asec× 60× 109 [µl/min] (5.3)

Thus, according to this and by observing the results present in Figure 5.13, it is possible to conclude

that using at least 10 samples (that corresponds to approximately 2.5 m/s of particle’s speed) the ANN

can differentiate the signals with an overall good accuracy.
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6.1 Conclusions

This work started with the simulation of various forms of signals from magnetic particles attached to

cells and clusters formed from free magnetic particles (using square packing). Since these simulations

have shown good results since they translate what happens in reality in a microfluidic channel of a

magnetic flow cytometer, the data obtained through these simulations were used to train a machine

learning model, namely, an artificial neural network to differentiate the signals coming from the magnetic

particles connected to the cells from the signals coming from the magnetic particles that form clusters.

By observing the accuracy results obtained, it was concluded that this model can differentiate the

signals with greater precision for a system with a maximum RMS noise signal of 7 µV which is the

equivalent of a minimum SNR value of 9.90 dB, for cells and clusters with a minimum of 20 particles. By

subsampling the signal it can also be concluded that the maximum speed that the particles can travel in

the microfluidic channel is at a speed of 2.5 m/s.

6.2 Future Work

For future work, I can suggest some tasks that can be carried out to improve the project.

• Carry out a more in-depth study of how free magnetic particles forms clusters when subjected to

magnetic excitation, through a real experience, and, if it makes sense, since it has not been tested,

implement hexagonal packing and see if the results obtained are better than square packing;

• Introduce the particle’s magnetization angle in the simulations because in this work it was assumed

that the particles were always perpendicular to the sensor’s plane;

• Test another ML models and activation functions - Since the work carried out so far using ML

models has always used artificial neural networks, and the results shown were very good, I chose

to implement the same model, however, exploring other models and activation functions could

bring different results;

• Test the implementation of the artificial neural network experimentally using cancer cells.
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